Дат низ величина н задатак је да вредност свих елемената буде једнака са минимални трошак . Цена промене вредности са к на и је абс(к - и).
Примери:
Улаз: арр[] = [1 100 101]
Излаз : 100
Објашњење: Можемо променити све његове вредности на 100 уз минималне трошкове
|1 - 100| + |100 - 100| + |101 - 100| = 100Инпут : арр[] = [4 6]
Излаз : 2
Објашњење: Можемо променити све његове вредности на 5 уз минималне трошкове
|4 - 5| + |5 - 6| = 2Улаз: арр[] = [5 5 5 5]
Излаз:
Објашњење: Све вредности су већ једнаке.
[Наивни приступ] Коришћење 2 угнежђене петље - О(н^2) време и О(1) простор
C++Имајте на уму да наш одговор увек може бити једна од вредности низа. Чак иу другом примеру изнад можемо алтернативно направити оба као 4 или оба као 6 по истој цени.
Идеја је да се свака вредност у низу сматра потенцијалном циљном вредношћу, а затим израчуна укупни трошак претварања свих осталих елемената у ту циљну вредност. Провером свих могућих циљних вредности можемо пронаћи ону која резултира минималним укупним трошковима конверзије.
// C++ program to Make all array // elements equal with minimum cost #include using namespace std; // Function which finds the minimum // cost to make array elements equal int minCost(vector<int> &arr) { int n = arr.size(); int ans = INT_MAX; // Try each element as the target value for (int i = 0; i < n; i++) { int currentCost = 0; // Calculate cost of making all // elements equal to arr[i] for (int j = 0; j < n; j++) { currentCost += abs(arr[j] - arr[i]); } // Update minimum cost if current cost is lower ans = min(ans currentCost); } return ans; } int main() { vector<int> arr = {1 100 101}; cout << minCost(arr) << endl; return 0; }
Java // Java program to Make all array // elements equal with minimum cost import java.util.*; class GfG { // Function which finds the minimum // cost to make array elements equal static int minCost(int[] arr) { int n = arr.length; int ans = Integer.MAX_VALUE; // Try each element as the target value for (int i = 0; i < n; i++) { int currentCost = 0; // Calculate cost of making all // elements equal to arr[i] for (int j = 0; j < n; j++) { currentCost += Math.abs(arr[j] - arr[i]); } // Update minimum cost if current cost is lower ans = Math.min(ans currentCost); } return ans; } public static void main(String[] args) { int[] arr = {1 100 101}; System.out.println(minCost(arr)); } }
Python # Python program to Make all array # elements equal with minimum cost # Function which finds the minimum # cost to make array elements equal def minCost(arr): n = len(arr) ans = float('inf') # Try each element as the target value for i in range(n): currentCost = 0 # Calculate cost of making all # elements equal to arr[i] for j in range(n): currentCost += abs(arr[j] - arr[i]) # Update minimum cost if current cost is lower ans = min(ans currentCost) return ans if __name__ == '__main__': arr = [1 100 101] print(minCost(arr))
C# // C# program to Make all array // elements equal with minimum cost using System; class GfG { // Function which finds the minimum // cost to make array elements equal static int minCost(int[] arr) { int n = arr.Length; int ans = int.MaxValue; // Try each element as the target value for (int i = 0; i < n; i++) { int currentCost = 0; // Calculate cost of making all // elements equal to arr[i] for (int j = 0; j < n; j++) { currentCost += Math.Abs(arr[j] - arr[i]); } // Update minimum cost if current cost is lower ans = Math.Min(ans currentCost); } return ans; } static void Main() { int[] arr = {1 100 101}; Console.WriteLine(minCost(arr)); } }
JavaScript // JavaScript program to Make all array // elements equal with minimum cost // Function which finds the minimum // cost to make array elements equal function minCost(arr) { let n = arr.length; let ans = Number.MAX_SAFE_INTEGER; // Try each element as the target value for (let i = 0; i < n; i++) { let currentCost = 0; // Calculate cost of making all // elements equal to arr[i] for (let j = 0; j < n; j++) { currentCost += Math.abs(arr[j] - arr[i]); } // Update minimum cost if current cost is lower ans = Math.min(ans currentCost); } return ans; } let arr = [1 100 101]; console.log(minCost(arr));
Излаз
100
[Очекивани приступ – 1] Коришћење бинарне претраге – О(н Лог (Распон)) време и О(1) простор
Идеја је да се користи бинарно претраживање за ефикасно проналажење оптималне вредности у коју треба да се конвертују сви елементи низа. Пошто функција укупних трошкова формира конвексну криву (прво пада, а затим расте) у опсегу могућих вредности, можемо користити бинарну претрагу да лоцирамо минималну тачку ове криве упоређивањем цене у средњој тачки са ценом у средњој тачки минус један што нам говори у ком правцу да тражимо даље.
Приступ корак по корак:
- Пронађите минималне и максималне вредности у низу да бисте успоставили опсег претраге
- Користите бинарну претрагу између минималне и максималне вредности да бисте лоцирали оптималну циљну вредност
- За сваку пробну вредност израчунајте укупан трошак претварања свих елемената низа у ту вредност
- Упоредите цену на тренутној средини са ценом на средини минус један да бисте одредили правац претраге
- Наставите да сужавате опсег претраге док не пронађете конфигурацију минималне цене
// C++ program to Make all array // elements equal with minimum cost #include using namespace std; // Function to find the cost of changing // array values to mid. int findCost(vector<int> &arr int mid) { int n = arr.size(); int ans = 0; for (int i=0; i<n; i++) { ans += abs(arr[i] - mid); } return ans; } // Function which finds the minimum cost // to make array elements equal. int minCost(vector<int> &arr) { int n = arr.size(); int mini = INT_MAX maxi = INT_MIN; // Find the minimum and maximum value. for (int i=0; i<n; i++) { mini = min(mini arr[i]); maxi = max(maxi arr[i]); } int s = mini e = maxi; int ans = INT_MAX; while (s <= e) { int mid = s + (e-s)/2; int cost1 = findCost(arr mid); int cost2 = findCost(arr mid-1); if (cost1 < cost2) { ans = cost1; s = mid + 1; } else { e = mid - 1; } } return ans; } int main() { vector<int> arr = {1 100 101}; cout << minCost(arr); return 0; }
Java // Java program to Make all array // elements equal with minimum cost import java.util.*; class GfG { // Function to find the cost of changing // array values to mid. static int findCost(int[] arr int mid) { int n = arr.length; int ans = 0; for (int i = 0; i < n; i++) { ans += Math.abs(arr[i] - mid); } return ans; } // Function which finds the minimum cost // to make array elements equal. static int minCost(int[] arr) { int n = arr.length; int mini = Integer.MAX_VALUE maxi = Integer.MIN_VALUE; // Find the minimum and maximum value. for (int i = 0; i < n; i++) { mini = Math.min(mini arr[i]); maxi = Math.max(maxi arr[i]); } int s = mini e = maxi; int ans = Integer.MAX_VALUE; while (s <= e) { int mid = s + (e - s) / 2; int cost1 = findCost(arr mid); int cost2 = findCost(arr mid - 1); if (cost1 < cost2) { ans = cost1; s = mid + 1; } else { e = mid - 1; } } return ans; } public static void main(String[] args) { int[] arr = {1 100 101}; System.out.println(minCost(arr)); } }
Python # Python program to Make all array # elements equal with minimum cost # Function to find the cost of changing # array values to mid. def findCost(arr mid): n = len(arr) ans = 0 for i in range(n): ans += abs(arr[i] - mid) return ans # Function which finds the minimum cost # to make array elements equal. def minCost(arr): n = len(arr) mini = float('inf') maxi = float('-inf') # Find the minimum and maximum value. for i in range(n): mini = min(mini arr[i]) maxi = max(maxi arr[i]) s = mini e = maxi ans = float('inf') while s <= e: mid = s + (e - s) // 2 cost1 = findCost(arr mid) cost2 = findCost(arr mid - 1) if cost1 < cost2: ans = cost1 s = mid + 1 else: e = mid - 1 return ans if __name__ == '__main__': arr = [1 100 101] print(minCost(arr))
C# // C# program to Make all array // elements equal with minimum cost using System; class GfG { // Function to find the cost of changing // array values to mid. static int findCost(int[] arr int mid) { int n = arr.Length; int ans = 0; for (int i = 0; i < n; i++) { ans += Math.Abs(arr[i] - mid); } return ans; } // Function which finds the minimum cost // to make array elements equal. static int minCost(int[] arr) { int n = arr.Length; int mini = int.MaxValue maxi = int.MinValue; // Find the minimum and maximum value. for (int i = 0; i < n; i++) { mini = Math.Min(mini arr[i]); maxi = Math.Max(maxi arr[i]); } int s = mini e = maxi; int ans = int.MaxValue; while (s <= e) { int mid = s + (e - s) / 2; int cost1 = findCost(arr mid); int cost2 = findCost(arr mid - 1); if (cost1 < cost2) { ans = cost1; s = mid + 1; } else { e = mid - 1; } } return ans; } static void Main() { int[] arr = {1 100 101}; Console.WriteLine(minCost(arr)); } }
JavaScript // JavaScript program to Make all array // elements equal with minimum cost // Function to find the cost of changing // array values to mid. function findCost(arr mid) { let n = arr.length; let ans = 0; for (let i = 0; i < n; i++) { ans += Math.abs(arr[i] - mid); } return ans; } // Function which finds the minimum cost // to make array elements equal. function minCost(arr) { let n = arr.length; let mini = Number.MAX_SAFE_INTEGER maxi = Number.MIN_SAFE_INTEGER; // Find the minimum and maximum value. for (let i = 0; i < n; i++) { mini = Math.min(mini arr[i]); maxi = Math.max(maxi arr[i]); } let s = mini e = maxi; let ans = Number.MAX_SAFE_INTEGER; while (s <= e) { let mid = Math.floor(s + (e - s) / 2); let cost1 = findCost(arr mid); let cost2 = findCost(arr mid - 1); if (cost1 < cost2) { ans = cost1; s = mid + 1; } else { e = mid - 1; } } return ans; } let arr = [1 100 101]; console.log(minCost(arr));
Излаз
100
[Очекивани приступ - 2] Коришћење сортирања - О(н Лог н) време и О(1) простор
Идеја је да се пронађе оптимална вредност на коју треба да се изједначе сви елементи који морају бити један од постојећих елемената низа. Прво сортирањем низа, а затим итерацијом кроз сваки елемент као потенцијалну циљну вредност, израчунавамо цену трансформације свих осталих елемената у ту вредност ефикасним праћењем збира елемената лево и десно од тренутне позиције.
Приступ корак по корак:
- Сортирајте низ за обраду елемената у растућем редоследу.
- За сваки елемент као потенцијалну циљну вредност израчунајте два трошка: подизање мањих елемената и смањење већих елемената.
- Пратите леви и десни збир да бисте ефикасно израчунали ове трошкове у константном времену по итерацији.
- Повећање трошкова мањих елемената: (тренутна вредност × број мањих елемената) - (збир мањих елемената)
- Смањење трошкова већих елемената: (збир већих елемената) - (тренутна вредност × број већих елемената)
- Упоредите тренутне трошкове са минималним трошковима.
// C++ program to Make all array // elements equal with minimum cost #include using namespace std; // Function which finds the minimum cost // to make array elements equal. int minCost(vector<int> &arr) { int n = arr.size(); // Sort the array sort(arr.begin() arr.end()); // Variable to store sum of elements // to the right side. int right = 0; for (int i=0; i<n; i++) { right += arr[i]; } int ans = INT_MAX; int left = 0; for (int i=0; i<n; i++) { // Remove the current element from right sum. right -= arr[i]; // Find cost of incrementing left side elements int leftCost = i * arr[i] - left; // Find cost of decrementing right side elements. int rightCost = right - (n-1-i) * arr[i]; ans = min(ans leftCost + rightCost); // Add current value to left sum left += arr[i]; } return ans; } int main() { vector<int> arr = {1 100 101}; cout << minCost(arr); return 0; }
Java // Java program to Make all array // elements equal with minimum cost import java.util.*; class GfG { // Function which finds the minimum cost // to make array elements equal. static int minCost(int[] arr) { int n = arr.length; // Sort the array Arrays.sort(arr); // Variable to store sum of elements // to the right side. int right = 0; for (int i = 0; i < n; i++) { right += arr[i]; } int ans = Integer.MAX_VALUE; int left = 0; for (int i = 0; i < n; i++) { // Remove the current element from right sum. right -= arr[i]; // Find cost of incrementing left side elements int leftCost = i * arr[i] - left; // Find cost of decrementing right side elements. int rightCost = right - (n - 1 - i) * arr[i]; ans = Math.min(ans leftCost + rightCost); // Add current value to left sum left += arr[i]; } return ans; } public static void main(String[] args) { int[] arr = {1 100 101}; System.out.println(minCost(arr)); } }
Python # Python program to Make all array # elements equal with minimum cost # Function which finds the minimum cost # to make array elements equal. def minCost(arr): n = len(arr) # Sort the array arr.sort() # Variable to store sum of elements # to the right side. right = sum(arr) ans = float('inf') left = 0 for i in range(n): # Remove the current element from right sum. right -= arr[i] # Find cost of incrementing left side elements leftCost = i * arr[i] - left # Find cost of decrementing right side elements. rightCost = right - (n - 1 - i) * arr[i] ans = min(ans leftCost + rightCost) # Add current value to left sum left += arr[i] return ans if __name__ == '__main__': arr = [1 100 101] print(minCost(arr))
C# // C# program to Make all array // elements equal with minimum cost using System; class GfG { // Function which finds the minimum cost // to make array elements equal. static int minCost(int[] arr) { int n = arr.Length; // Sort the array Array.Sort(arr); // Variable to store sum of elements // to the right side. int right = 0; for (int i = 0; i < n; i++) { right += arr[i]; } int ans = int.MaxValue; int left = 0; for (int i = 0; i < n; i++) { // Remove the current element from right sum. right -= arr[i]; // Find cost of incrementing left side elements int leftCost = i * arr[i] - left; // Find cost of decrementing right side elements. int rightCost = right - (n - 1 - i) * arr[i]; ans = Math.Min(ans leftCost + rightCost); // Add current value to left sum left += arr[i]; } return ans; } static void Main() { int[] arr = {1 100 101}; Console.WriteLine(minCost(arr)); } }
JavaScript // JavaScript program to Make all array // elements equal with minimum cost // Function which finds the minimum cost // to make array elements equal. function minCost(arr) { let n = arr.length; // Sort the array arr.sort((a b) => a - b); // Variable to store sum of elements // to the right side. let right = 0; for (let i = 0; i < n; i++) { right += arr[i]; } let ans = Number.MAX_SAFE_INTEGER; let left = 0; for (let i = 0; i < n; i++) { // Remove the current element from right sum. right -= arr[i]; // Find cost of incrementing left side elements let leftCost = i * arr[i] - left; // Find cost of decrementing right side elements. let rightCost = right - (n - 1 - i) * arr[i]; ans = Math.min(ans leftCost + rightCost); // Add current value to left sum left += arr[i]; } return ans; } let arr = [1 100 101]; console.log(minCost(arr));
Излаз
100Креирај квиз