С обзиром на празан сет у почетку и бројним упитима на њеном тренутку следеће врсте:
- Уметање 'Кс' се врши помоћу ажурирања (1 0 10 ^ 6 к 1). Имајте на уму да је коријен стабла донесен старт индекс преноси се као 0 и крајњи индекс као 10 ^ 6 тако да се све распони који имају Кс ажурирају се.
- Избриши 'Кс' се ради помоћу ажурирања (1 0 10 ^ 6 к -1). Имајте на уму да је коријен стабла донесен старт индекс преноси се као 0 и крајњи индекс као 10 ^ 6 тако да се све распони који имају Кс ажурирају се.
Пример:
Input : Insert 1 Insert 4 Insert 7 Median Output : The first three queries should insert 1 4 and 7 into an empty set. The fourth query should return 4 (median of 1 4 7).
За излагачку сврху претпостављамо следеће, али ове претпоставке нису ограничења овде речи:
1. У сваком случају, сви елементи су различити, то се од њих не догађа више од једном.
2 'Медијан' упит је направљен само када у сету постоје непарни број елемената. (Морат ћемо да направимо два упита на стаблу сегмента у случају парно бројева)
3. Елементи у сету крећу се од 1 до + 10 ^ 6.
Метода 1 (наивно)
У наивном имплементацији можемо да урадимо прве две упите у О (1), али последњи упит у О (МАКС_ЕЛЕМ) где је Мак_елем максимални елемент свих времена (укључујући избрисане елементе).
Претпоставимо мало низа бројање [] (величине 10 ^ 6 + 1) да би се одржило рачунање сваког елемента у подскупини. Следе једноставне и самосталне алгоритме за 3 упита:
Убаци к упит:
count[x]++; if (x > max_elem) max_elem = x; n++;
Обриши к упит:
if (count[x] > 0) count[x]--; n--;
Средњи упит:
sum = 0; i = 0; while( sum <= n / 2 ) { i++; sum += count[i]; } median = i; return median; Илустрација броја низа [] представља сет {1 4 7 8 9} Медијан Елемент је '7':
"Средњи" упит намерава да пронађе (Н + 1) / 2. '1' у низу у овом случају 3. '1'; Сада то учинимо исто коришћењем дрвећа сегмента.
Метода 2 (користећи Сегментно дрво )
Правимо сегментно дрво Да бисте сачували збир интервала где интервал [А б] представља број елемената присутних у сету који је тренутно у опсегу [А Б]. На пример, ако узмемо у обзир горе наведени пример упит (3 7) повраћај 2 упита (4 4) враћа 1 упит (5 5) враћа 0.
Уметање и брисање упита је једноставно и обе се могу имплементирати коришћењем ажурирања функција (Инт Кс инт разл.) (Додаје 'разл' 'у индексу' к ')
Алгоритам
// adds ‘diff’ at index ‘x’ update(node a b x diff) // If leaf node If a == b and a == x segmentTree[node] += diff // If non-leaf node and x lies in its range If x is in [a b] // Update children recursively update(2*node a (a + b)/2 x diff) update(2*node + 1 (a + b)/2 + 1 b x diff) // Update node segmentTree[node] = segmentTree[2 * node] + segmentTree[2 * node + 1]
Горе наведена рекурзивна функција ради у О (Дневник (мак_елем)) (У овом случају Мак_елем је 10 ^ 6) и користи се за уметање и брисање следећим позивима:
Сада је функција да пронађете индекс са КТХ '1' где "К 'у овом случају ће увек бити (Н + 1) / 2 Ово ће много радити као бинарна претрага коју можете сматрати рекурзивним функцијама бинарних претраживања на сегменту.
Узмимо пример да схватимо наш сет који тренутно има елементе {1 4 7 8 9} и самим тим је заступљен следећим дрветом сегмента.
Ако смо на чвори без листа, сигурни смо да има и децу да видимо да ли лево дете има више или једнаког броја нечијег "к" ако је одговор да јесте да наши индекс буде у супротном ако леви подтрет буде у супротном, сигуран смо да наши индекс налази се у правом подвоју. Ми то рекурзивно радимо да бисмо стигли на наш индекс и одатле га враћамо.
Алгоритам
1.findKth(node a b k) 2. If a != b 3. If segmentTree[ 2 * node ] >= k 4. return findKth(2*node a (a + b)/2 k) 5. else 6. return findKth(2*node + 1 (a + b)/2 + 1 b k - segmentTree[ 2 * node ]) 7. else 8. return a
Горе наведена рекурзивна функција ради у О (Дневник (мак_елем)) .
// A C++ program to implement insert delete and // median queries using segment tree #include #define maxn 3000005 #define max_elem 1000000 using namespace std; // A global array to store segment tree. // Note: Since it is global all elements are 0. int segmentTree[maxn]; // Update 'node' and its children in segment tree. // Here 'node' is index in segmentTree[] 'a' and // 'b' are starting and ending indexes of range stored // in current node. // 'diff' is the value to be added to value 'x'. void update(int node int a int b int x int diff) { // If current node is a leaf node if (a == b && a == x ) { // add 'diff' and return segmentTree[node] += diff; return ; } // If current node is non-leaf and 'x' is in its // range if (x >= a && x <= b) { // update both sub-trees left and right update(node*2 a (a + b)/2 x diff); update(node*2 + 1 (a + b)/2 + 1 b x diff); // Finally update current node segmentTree[node] = segmentTree[node*2] + segmentTree[node*2 + 1]; } } // Returns k'th node in segment tree int findKth(int node int a int b int k) { // non-leaf node will definitely have both // children; left and right if (a != b) { // If kth element lies in the left subtree if (segmentTree[node*2] >= k) return findKth(node*2 a (a + b)/2 k); // If kth one lies in the right subtree return findKth(node*2 + 1 (a + b)/2 + 1 b k - segmentTree[node*2]); } // if at a leaf node return the index it stores // information about return (segmentTree[node])? a : -1; } // insert x in the set void insert(int x) { update(1 0 max_elem x 1); } // delete x from the set void delete(int x) { update(1 0 max_elem x -1); } // returns median element of the set with odd // cardinality only int median() { int k = (segmentTree[1] + 1) / 2; return findKth(1 0 max_elem k); } // Driver code int main() { insert(1); insert(4); insert(7); cout << 'Median for the set {147} = ' << median() << endl; insert(8); insert(9); cout << 'Median for the set {14789} = ' << median() << endl; delete(1); delete(8); cout << 'Median for the set {479} = ' << median() << endl; return 0; }
Java // A Java program to implement insert delete and // median queries using segment tree import java.io.*; class GFG{ public static int maxn = 3000005; public static int max_elem = 1000000; // A global array to store segment tree. // Note: Since it is global all elements are 0. public static int[] segmentTree = new int[maxn]; // Update 'node' and its children in segment tree. // Here 'node' is index in segmentTree[] 'a' and // 'b' are starting and ending indexes of range stored // in current node. // 'diff' is the value to be added to value 'x'. public static void update(int node int a int b int x int diff) { // If current node is a leaf node if (a == b && a == x ) { // Add 'diff' and return segmentTree[node] += diff; return ; } // If current node is non-leaf and 'x' // is in its range if (x >= a && x <= b) { // Update both sub-trees left and right update(node * 2 a (a + b) / 2 x diff); update(node * 2 + 1 (a + b) / 2 + 1 b x diff); // Finally update current node segmentTree[node] = segmentTree[node * 2] + segmentTree[node * 2 + 1]; } } // Returns k'th node in segment tree public static int findKth(int node int a int b int k) { // Non-leaf node will definitely have both // children; left and right if (a != b) { // If kth element lies in the left subtree if (segmentTree[node * 2] >= k) { return findKth(node * 2 a (a + b) / 2 k); } // If kth one lies in the right subtree return findKth(node * 2 + 1 (a + b) / 2 + 1 b k - segmentTree[node * 2]); } // If at a leaf node return the index it stores // information about return (segmentTree[node] != 0) ? a : -1; } // Insert x in the set public static void insert(int x) { update(1 0 max_elem x 1); } // Delete x from the set public static void delete(int x) { update(1 0 max_elem x -1); } // Returns median element of the set // with odd cardinality only public static int median() { int k = (segmentTree[1] + 1) / 2; return findKth(1 0 max_elem k); } // Driver code public static void main(String[] args) { insert(1); insert(4); insert(7); System.out.println('Median for the set {147} = ' + median()); insert(8); insert(9); System.out.println('Median for the set {14789} = ' + median()); delete(1); delete(8); System.out.println('Median for the set {479} = ' + median()); } } // This code is contributed by avanitrachhadiya2155
Python3 # A Python3 program to implement insert delete and # median queries using segment tree maxn = 3000005 max_elem = 1000000 # A global array to store segment tree. # Note: Since it is global all elements are 0. segmentTree = [0 for i in range(maxn)] # Update 'node' and its children in segment tree. # Here 'node' is index in segmentTree[] 'a' and # 'b' are starting and ending indexes of range stored # in current node. # 'diff' is the value to be added to value 'x'. def update(node a b x diff): global segmentTree # If current node is a leaf node if (a == b and a == x ): # add 'diff' and return segmentTree[node] += diff return # If current node is non-leaf and 'x' is in its # range if (x >= a and x <= b): # update both sub-trees left and right update(node * 2 a (a + b)//2 x diff) update(node * 2 + 1 (a + b)//2 + 1 b x diff) # Finally update current node segmentTree[node] = segmentTree[node * 2] + segmentTree[node * 2 + 1] # Returns k'th node in segment tree def findKth(node a b k): global segmentTree # non-leaf node will definitely have both # children left and right if (a != b): # If kth element lies in the left subtree if (segmentTree[node * 2] >= k): return findKth(node * 2 a (a + b)//2 k) # If kth one lies in the right subtree return findKth(node * 2 + 1 (a + b)//2 + 1 b k - segmentTree[node * 2]) # if at a leaf node return the index it stores # information about return a if (segmentTree[node]) else -1 # insert x in the set def insert(x): update(1 0 max_elem x 1) # delete x from the set def delete(x): update(1 0 max_elem x -1) # returns median element of the set with odd # cardinality only def median(): k = (segmentTree[1] + 1) // 2 return findKth(1 0 max_elem k) # Driver code if __name__ == '__main__': insert(1) insert(4) insert(7) print('Median for the set {147} ='median()) insert(8) insert(9) print('Median for the set {14789} ='median()) delete(1) delete(8) print('Median for the set {479} ='median()) # This code is contributed by mohit kumar 29
C# // A C# program to implement insert delete // and median queries using segment tree using System; class GFG{ public static int maxn = 3000005; public static int max_elem = 1000000; // A global array to store segment tree. // Note: Since it is global all elements are 0. public static int[] segmentTree = new int[maxn]; // Update 'node' and its children in segment tree. // Here 'node' is index in segmentTree[] 'a' and // 'b' are starting and ending indexes of range stored // in current node. // 'diff' is the value to be added to value 'x'. public static void update(int node int a int b int x int diff) { // If current node is a leaf node if (a == b && a == x) { // Add 'diff' and return segmentTree[node] += diff; return ; } // If current node is non-leaf and 'x' // is in its range if (x >= a && x <= b) { // Update both sub-trees left and right update(node * 2 a (a + b) / 2 x diff); update(node * 2 + 1 (a + b) / 2 + 1 b x diff); // Finally update current node segmentTree[node] = segmentTree[node * 2] + segmentTree[node * 2 + 1]; } } // Returns k'th node in segment tree public static int findKth(int node int a int b int k) { // Non-leaf node will definitely have both // children; left and right if (a != b) { // If kth element lies in the left subtree if (segmentTree[node * 2] >= k) { return findKth(node * 2 a (a + b) / 2 k); } // If kth one lies in the right subtree return findKth(node * 2 + 1 (a + b) / 2 + 1 b k - segmentTree[node * 2]); } // If at a leaf node return the index it // stores information about if (segmentTree[node] != 0) { return a; } else { return -1; } } // Insert x in the set public static void insert(int x) { update(1 0 max_elem x 1); } // Delete x from the set public static void delete(int x) { update(1 0 max_elem x -1); } // Returns median element of the set // with odd cardinality only public static int median() { int k = (segmentTree[1] + 1) / 2; return findKth(1 0 max_elem k); } // Driver code static public void Main() { insert(1); insert(4); insert(7); Console.WriteLine('Median for the set {147} = ' + median()); insert(8); insert(9); Console.WriteLine('Median for the set {14789} = ' + median()); delete(1); delete(8); Console.WriteLine('Median for the set {479} = ' + median()); } } // This code is contributed by rag2127
JavaScript <script> // A Javascript program to implement insert delete and // median queries using segment tree let maxn = 3000005; let max_elem = 1000000; // A global array to store segment tree. // Note: Since it is global all elements are 0. let segmentTree = new Array(maxn); for(let i=0;i<maxn;i++) { segmentTree[i]=0; } // Update 'node' and its children in segment tree. // Here 'node' is index in segmentTree[] 'a' and // 'b' are starting and ending indexes of range stored // in current node. // 'diff' is the value to be added to value 'x'. function update(nodeabxdiff) { // If current node is a leaf node if (a == b && a == x ) { // Add 'diff' and return segmentTree[node] += diff; return ; } // If current node is non-leaf and 'x' // is in its range if (x >= a && x <= b) { // Update both sub-trees left and right update(node * 2 a Math.floor((a + b) / 2) x diff); update(node * 2 + 1 Math.floor((a + b) / 2) + 1 b x diff); // Finally update current node segmentTree[node] = segmentTree[node * 2] + segmentTree[node * 2 + 1]; } } // Returns k'th node in segment tree function findKth(nodeabk) { // Non-leaf node will definitely have both // children; left and right if (a != b) { // If kth element lies in the left subtree if (segmentTree[node * 2] >= k) { return findKth(node * 2 a Math.floor((a + b) / 2) k); } // If kth one lies in the right subtree return findKth(node * 2 + 1 Math.floor((a + b) / 2) + 1 b k - segmentTree[node * 2]); } // If at a leaf node return the index it stores // information about return (segmentTree[node] != 0) ? a : -1; } // Insert x in the set function insert(x) { update(1 0 max_elem x 1); } // Delete x from the set function delet(x) { update(1 0 max_elem x -1); } // Returns median element of the set // with odd cardinality only function median() { let k = (segmentTree[1] + 1) / 2; return findKth(1 0 max_elem k); } // Driver code insert(1); insert(4); insert(7); document.write('Median for the set {147} = ' + median()+'
'); insert(8); insert(9); document.write('Median for the set {14789} = ' + median()+'
'); delet(1); delet(8); document.write('Median for the set {479} = ' + median()+'
'); // This code is contributed by unknown2108 </script>
Излаз:
Median for the set {147} = 4 Median for the set {14789} = 7 Median for the set {479} = 7
Закључак:
Сва три упита улазе у О (Дневник (мак_елем)) У овом случају Мак_елем = 10 ^ 6 па је лог (мак_елем) приближно једнак 20.
Дрвећа сегмента користи О (мак_елем) Простор.
Ако је упит за брисање није било, проблем је могао и са познатим алгоритамом овде .