Дати Веигхтед Дирецтед Ацицлиц Грапх (ДАГ) и изворни врх у њему пронађите највеће удаљености од врха извора до свих осталих врхова у датом графу.
755 цхмод
Већ смо разговарали о томе како можемо пронаћи Најдужи пут у усмереном ацикличном графу (ДАГ) у сету 1. У овом посту ћемо разговарати о још једном занимљивом решењу за проналажење најдужег пута ДАГ-а који користи алгоритам за проналажење Најкраћи пут у ДАГ-у .
Идеја је да се негирати тежине путање и пронаћи најкраћу путању у графу . Најдужа путања између два дата темена с и т у пондерисаном графу Г је иста ствар као и најкраћа путања у графу Г' изведена из Г променом сваке тежине у њену негацију. Дакле, ако се најкраћи путеви могу наћи у Г', онда се и најдужи путеви могу наћи у Г.
Испод је корак по корак процес проналажења најдужих путева -
Ми мењамо тежину сваке ивице датог графа на његову негацију и иницијализујемо растојања до свих врхова као бесконачне и растојање до извора као 0, а затим налазимо тополошко сортирање графа које представља линеарни поредак графа. Када разматрамо врх у у тополошком реду, гарантовано је да смо узели у обзир сваку долазну ивицу у њега. тј. Већ смо пронашли најкраћу путању до тог врха и можемо да користимо те информације да ажурирамо краћу путању свих његових суседних врхова. Једном када имамо тополошки ред, један по један обрађујемо све врхове у тополошком реду. За сваки врх који се обрађује ажурирамо растојања његовог суседног темена користећи најкраћу удаљеност тренутног темена од изворног врха и тежину његове ивице. тј.
for every adjacent vertex v of every vertex u in topological order if (dist[v] > dist[u] + weight(u v)) dist[v] = dist[u] + weight(u v)
Једном када пронађемо све најкраће путање из изворног врха, најдуже путање ће бити само негација најкраћих путања.
ф филмовима
Испод је примена горњег приступа:
C++// A C++ program to find single source longest distances // in a DAG #include using namespace std; // Graph is represented using adjacency list. Every node of // adjacency list contains vertex number of the vertex to // which edge connects. It also contains weight of the edge class AdjListNode { int v; int weight; public: AdjListNode(int _v int _w) { v = _v; weight = _w; } int getV() { return v; } int getWeight() { return weight; } }; // Graph class represents a directed graph using adjacency // list representation class Graph { int V; // No. of vertices // Pointer to an array containing adjacency lists list<AdjListNode>* adj; // This function uses DFS void longestPathUtil(int vector<bool> & stack<int> &); public: Graph(int); // Constructor ~Graph(); // Destructor // function to add an edge to graph void addEdge(int int int); void longestPath(int); }; Graph::Graph(int V) // Constructor { this->V = V; adj = new list<AdjListNode>[V]; } Graph::~Graph() // Destructor { delete[] adj; } void Graph::addEdge(int u int v int weight) { AdjListNode node(v weight); adj[u].push_back(node); // Add v to u's list } // A recursive function used by longestPath. See below // link for details. // https://www.geeksforgeeks.org/dsa/topological-sorting/ void Graph::longestPathUtil(int v vector<bool> &visited stack<int> &Stack) { // Mark the current node as visited visited[v] = true; // Recur for all the vertices adjacent to this vertex for (AdjListNode node : adj[v]) { if (!visited[node.getV()]) longestPathUtil(node.getV() visited Stack); } // Push current vertex to stack which stores topological // sort Stack.push(v); } // The function do Topological Sort and finds longest // distances from given source vertex void Graph::longestPath(int s) { // Initialize distances to all vertices as infinite and // distance to source as 0 int dist[V]; for (int i = 0; i < V; i++) dist[i] = INT_MAX; dist[s] = 0; stack<int> Stack; // Mark all the vertices as not visited vector<bool> visited(V false); for (int i = 0; i < V; i++) if (visited[i] == false) longestPathUtil(i visited Stack); // Process vertices in topological order while (!Stack.empty()) { // Get the next vertex from topological order int u = Stack.top(); Stack.pop(); if (dist[u] != INT_MAX) { // Update distances of all adjacent vertices // (edge from u -> v exists) for (AdjListNode v : adj[u]) { // consider negative weight of edges and // find shortest path if (dist[v.getV()] > dist[u] + v.getWeight() * -1) dist[v.getV()] = dist[u] + v.getWeight() * -1; } } } // Print the calculated longest distances for (int i = 0; i < V; i++) { if (dist[i] == INT_MAX) cout << 'INT_MIN '; else cout << (dist[i] * -1) << ' '; } } // Driver code int main() { Graph g(6); g.addEdge(0 1 5); g.addEdge(0 2 3); g.addEdge(1 3 6); g.addEdge(1 2 2); g.addEdge(2 4 4); g.addEdge(2 5 2); g.addEdge(2 3 7); g.addEdge(3 5 1); g.addEdge(3 4 -1); g.addEdge(4 5 -2); int s = 1; cout << 'Following are longest distances from ' << 'source vertex ' << s << ' n'; g.longestPath(s); return 0; }
Python3 # A Python3 program to find single source # longest distances in a DAG import sys def addEdge(u v w): global adj adj[u].append([v w]) # A recursive function used by longestPath. # See below link for details. # https:#www.geeksforgeeks.org/topological-sorting/ def longestPathUtil(v): global visited adjStack visited[v] = 1 # Recur for all the vertices adjacent # to this vertex for node in adj[v]: if (not visited[node[0]]): longestPathUtil(node[0]) # Push current vertex to stack which # stores topological sort Stack.append(v) # The function do Topological Sort and finds # longest distances from given source vertex def longestPath(s): # Initialize distances to all vertices # as infinite and global visited Stack adjV dist = [sys.maxsize for i in range(V)] # for (i = 0 i < V i++) # dist[i] = INT_MAX dist[s] = 0 for i in range(V): if (visited[i] == 0): longestPathUtil(i) # print(Stack) while (len(Stack) > 0): # Get the next vertex from topological order u = Stack[-1] del Stack[-1] if (dist[u] != sys.maxsize): # Update distances of all adjacent vertices # (edge from u -> v exists) for v in adj[u]: # Consider negative weight of edges and # find shortest path if (dist[v[0]] > dist[u] + v[1] * -1): dist[v[0]] = dist[u] + v[1] * -1 # Print the calculated longest distances for i in range(V): if (dist[i] == sys.maxsize): print('INT_MIN ' end = ' ') else: print(dist[i] * (-1) end = ' ') # Driver code if __name__ == '__main__': V = 6 visited = [0 for i in range(7)] Stack = [] adj = [[] for i in range(7)] addEdge(0 1 5) addEdge(0 2 3) addEdge(1 3 6) addEdge(1 2 2) addEdge(2 4 4) addEdge(2 5 2) addEdge(2 3 7) addEdge(3 5 1) addEdge(3 4 -1) addEdge(4 5 -2) s = 1 print('Following are longest distances from source vertex' s) longestPath(s) # This code is contributed by mohit kumar 29
C# // C# program to find single source longest distances // in a DAG using System; using System.Collections.Generic; // Graph is represented using adjacency list. Every node of // adjacency list contains vertex number of the vertex to // which edge connects. It also contains weight of the edge class AdjListNode { private int v; private int weight; public AdjListNode(int _v int _w) { v = _v; weight = _w; } public int getV() { return v; } public int getWeight() { return weight; } } // Graph class represents a directed graph using adjacency // list representation class Graph { private int V; // No. of vertices // Pointer to an array containing adjacency lists private List<AdjListNode>[] adj; public Graph(int v) // Constructor { V = v; adj = new List<AdjListNode>[ v ]; for (int i = 0; i < v; i++) adj[i] = new List<AdjListNode>(); } public void AddEdge(int u int v int weight) { AdjListNode node = new AdjListNode(v weight); adj[u].Add(node); // Add v to u's list } // A recursive function used by longestPath. See below // link for details. // https://www.geeksforgeeks.org/dsa/topological-sorting/ private void LongestPathUtil(int v bool[] visited Stack<int> stack) { // Mark the current node as visited visited[v] = true; // Recur for all the vertices adjacent to this // vertex foreach(AdjListNode node in adj[v]) { if (!visited[node.getV()]) LongestPathUtil(node.getV() visited stack); } // Push current vertex to stack which stores // topological sort stack.Push(v); } // The function do Topological Sort and finds longest // distances from given source vertex public void LongestPath(int s) { // Initialize distances to all vertices as infinite // and distance to source as 0 int[] dist = new int[V]; for (int i = 0; i < V; i++) dist[i] = Int32.MaxValue; dist[s] = 0; Stack<int> stack = new Stack<int>(); // Mark all the vertices as not visited bool[] visited = new bool[V]; for (int i = 0; i < V; i++) { if (visited[i] == false) LongestPathUtil(i visited stack); } // Process vertices in topological order while (stack.Count > 0) { // Get the next vertex from topological order int u = stack.Pop(); if (dist[u] != Int32.MaxValue) { // Update distances of all adjacent vertices // (edge from u -> v exists) foreach(AdjListNode v in adj[u]) { // consider negative weight of edges and // find shortest path if (dist[v.getV()] > dist[u] + v.getWeight() * -1) dist[v.getV()] = dist[u] + v.getWeight() * -1; } } } // Print the calculated longest distances for (int i = 0; i < V; i++) { if (dist[i] == Int32.MaxValue) Console.Write('INT_MIN '); else Console.Write('{0} ' dist[i] * -1); } Console.WriteLine(); } } public class GFG { // Driver code static void Main(string[] args) { Graph g = new Graph(6); g.AddEdge(0 1 5); g.AddEdge(0 2 3); g.AddEdge(1 3 6); g.AddEdge(1 2 2); g.AddEdge(2 4 4); g.AddEdge(2 5 2); g.AddEdge(2 3 7); g.AddEdge(3 5 1); g.AddEdge(3 4 -1); g.AddEdge(4 5 -2); int s = 1; Console.WriteLine( 'Following are longest distances from source vertex {0} ' s); g.LongestPath(s); } } // This code is contributed by cavi4762.
Java // A Java program to find single source longest distances // in a DAG import java.util.*; // Graph is represented using adjacency list. Every // node of adjacency list contains vertex number of // the vertex to which edge connects. It also // contains weight of the edge class AdjListNode { private int v; private int weight; AdjListNode(int _v int _w) { v = _v; weight = _w; } int getV() { return v; } int getWeight() { return weight; } } // Class to represent a graph using adjacency list // representation public class GFG { int V; // No. of vertices' // Pointer to an array containing adjacency lists ArrayList<AdjListNode>[] adj; @SuppressWarnings('unchecked') GFG(int V) // Constructor { this.V = V; adj = new ArrayList[V]; for (int i = 0; i < V; i++) { adj[i] = new ArrayList<>(); } } void addEdge(int u int v int weight) { AdjListNode node = new AdjListNode(v weight); adj[u].add(node); // Add v to u's list } // A recursive function used by longestPath. See // below link for details https:// // www.geeksforgeeks.org/topological-sorting/ void topologicalSortUtil(int v boolean visited[] Stack<Integer> stack) { // Mark the current node as visited visited[v] = true; // Recur for all the vertices adjacent to this // vertex for (int i = 0; i < adj[v].size(); i++) { AdjListNode node = adj[v].get(i); if (!visited[node.getV()]) topologicalSortUtil(node.getV() visited stack); } // Push current vertex to stack which stores // topological sort stack.push(v); } // The function to find Smallest distances from a // given vertex. It uses recursive // topologicalSortUtil() to get topological sorting. void longestPath(int s) { Stack<Integer> stack = new Stack<Integer>(); int dist[] = new int[V]; // Mark all the vertices as not visited boolean visited[] = new boolean[V]; for (int i = 0; i < V; i++) visited[i] = false; // Call the recursive helper function to store // Topological Sort starting from all vertices // one by one for (int i = 0; i < V; i++) if (visited[i] == false) topologicalSortUtil(i visited stack); // Initialize distances to all vertices as // infinite and distance to source as 0 for (int i = 0; i < V; i++) dist[i] = Integer.MAX_VALUE; dist[s] = 0; // Process vertices in topological order while (stack.isEmpty() == false) { // Get the next vertex from topological // order int u = stack.peek(); stack.pop(); // Update distances of all adjacent vertices if (dist[u] != Integer.MAX_VALUE) { for (AdjListNode v : adj[u]) { if (dist[v.getV()] > dist[u] + v.getWeight() * -1) dist[v.getV()] = dist[u] + v.getWeight() * -1; } } } // Print the calculated longest distances for (int i = 0; i < V; i++) if (dist[i] == Integer.MAX_VALUE) System.out.print('INF '); else System.out.print(dist[i] * -1 + ' '); } // Driver program to test above functions public static void main(String args[]) { // Create a graph given in the above diagram. // Here vertex numbers are 0 1 2 3 4 5 with // following mappings: // 0=r 1=s 2=t 3=x 4=y 5=z GFG g = new GFG(6); g.addEdge(0 1 5); g.addEdge(0 2 3); g.addEdge(1 3 6); g.addEdge(1 2 2); g.addEdge(2 4 4); g.addEdge(2 5 2); g.addEdge(2 3 7); g.addEdge(3 5 1); g.addEdge(3 4 -1); g.addEdge(4 5 -2); int s = 1; System.out.print( 'Following are longest distances from source vertex ' + s + ' n'); g.longestPath(s); } } // This code is contributed by Prithi_Dey
JavaScript class AdjListNode { constructor(v weight) { this.v = v; this.weight = weight; } getV() { return this.v; } getWeight() { return this.weight; } } class GFG { constructor(V) { this.V = V; this.adj = new Array(V); for (let i = 0; i < V; i++) { this.adj[i] = new Array(); } } addEdge(u v weight) { let node = new AdjListNode(v weight); this.adj[u].push(node); } topologicalSortUtil(v visited stack) { visited[v] = true; for (let i = 0; i < this.adj[v].length; i++) { let node = this.adj[v][i]; if (!visited[node.getV()]) { this.topologicalSortUtil(node.getV() visited stack); } } stack.push(v); } longestPath(s) { let stack = new Array(); let dist = new Array(this.V); let visited = new Array(this.V); for (let i = 0; i < this.V; i++) { visited[i] = false; } for (let i = 0; i < this.V; i++) { if (!visited[i]) { this.topologicalSortUtil(i visited stack); } } for (let i = 0; i < this.V; i++) { dist[i] = Number.MAX_SAFE_INTEGER; } dist[s] = 0; let u = stack.pop(); while (stack.length > 0) { u = stack.pop(); if (dist[u] !== Number.MAX_SAFE_INTEGER) { for (let v of this.adj[u]) { if (dist[v.getV()] > dist[u] + v.getWeight() * -1) { dist[v.getV()] = dist[u] + v.getWeight() * -1; } } } } for (let i = 0; i < this.V; i++) { if (dist[i] === Number.MAX_SAFE_INTEGER) { console.log('INF'); } else { console.log(dist[i] * -1); } } } } let g = new GFG(6); g.addEdge(0 1 5); g.addEdge(0 2 3); g.addEdge(1 3 6); g.addEdge(1 2 2); g.addEdge(2 4 4); g.addEdge(2 5 2); g.addEdge(2 3 7); g.addEdge(3 5 1); g.addEdge(3 4 -1); g.addEdge(4 5 -2); console.log('Longest distances from the vertex 1 : '); g.longestPath(1); //this code is contributed by devendra
Излаз
Following are longest distances from source vertex 1 INT_MIN 0 2 9 8 10
Временска сложеност : Временска сложеност тополошког сортирања је О(В + Е). Након проналажења тополошког реда, алгоритам обрађује све врхове и за сваки врх покреће петљу за све суседне врхове. Пошто је укупни суседни врхови у графу О(Е), унутрашња петља се креће О(В + Е) пута. Стога је укупна временска сложеност овог алгоритма О(В + Е).
Сложеност простора:
Просторна сложеност горњег алгоритма је О(В). Чувамо излазни низ и стек за тополошко сортирање.
јава повезивање