Дат је број н такав да је 1<= N <= 10^6 the Task is to Find the LCM of First n Natural Numbers.
Примери:
Input : n = 5 Output : 60 Input : n = 6 Output : 60 Input : n = 7 Output : 420
Препоручујемо вам да кликнете овде и вежбате пре него што пређете на решење.
Разговарали смо о једноставном решењу у наставку чланка.
Најмањи број дељив са првих н бројева
Горње решење добро функционише за један улаз. Али ако имамо више улаза, добра је идеја да се користи Ератостеново сито да ускладишти све основне факторе. Као што знамо да је ЛЦМ(а б) = Кс, тако да ће сваки прости фактор од а или б такође бити прост фактор од „Кс“.
- Иницијализујте лцм променљиву са 1
- Генеришите сито Ератостена (боол вектор је Приме) дужине 10^6 (идеално мора бити једнако броју цифара у факторијалу)
- Сада за сваки број у боол вектору исПриме ако је број прост (исПриме[и] је тачно) пронађите максимални број који је мањи од датог броја и једнак степену простог броја.
- Затим помножите овај број са лцм променљивом.
- Поновите кораке 3 и 4 док прости број не буде мањи од датог броја.
Илустрација:
For example if n = 10 8 will be the first number which is equal to 2^3 then 9 which is equal to 3^2 then 5 which is equal to 5^1 then 7 which is equal to 7^1 Finally we multiply those numbers 8*9*5*7 = 2520
Испод је имплементација горње идеје.
C++// C++ program to find LCM of First N Natural Numbers. #include #define MAX 100000 using namespace std; vector<bool> isPrime (MAX true); // utility function for sieve of sieve of Eratosthenes void sieve() { for (int i = 2; i * i <= MAX; i++) { if (isPrime[i] == true) for (int j = i*i; j<= MAX; j+=i) isPrime[j] = false; } } // Function to find LCM of first n Natural Numbers long long LCM(int n) { long long lcm = 1; int i=2; while(i<=n) { if(isPrime[i]){ int pp = i; while (pp * i <= n) pp = pp * i; lcm *= pp; } i++; } return lcm; } // Driver code int main() { // build sieve sieve(); int N = 7; // Function call cout << LCM(N); return 0; }
Java // Java program to find LCM of First N Natural Numbers. import java.util.*; class GFG { static int MAX = 100000; // array to store all prime less than and equal to 10^6 static ArrayList<Integer> primes = new ArrayList<Integer>(); // utility function for sieve of sieve of Eratosthenes static void sieve() { boolean[] isComposite = new boolean[MAX + 1]; for (int i = 2; i * i <= MAX; i++) { if (isComposite[i] == false) for (int j = 2; j * i <= MAX; j++) isComposite[i * j] = true; } // Store all prime numbers in vector primes[] for (int i = 2; i <= MAX; i++) if (isComposite[i] == false) primes.add(i); } // Function to find LCM of first n Natural Numbers static long LCM(int n) { long lcm = 1; for (int i = 0; i < primes.size() && primes.get(i) <= n; i++) { // Find the highest power of prime primes[i] // that is less than or equal to n int pp = primes.get(i); while (pp * primes.get(i) <= n) pp = pp * primes.get(i); // multiply lcm with highest power of prime[i] lcm *= pp; lcm %= 1000000007; } return lcm; } // Driver code public static void main(String[] args) { sieve(); int N = 7; // Function call System.out.println(LCM(N)); } } // This code is contributed by mits
Python3 # Python3 program to find LCM of # First N Natural Numbers. MAX = 100000 # array to store all prime less # than and equal to 10^6 primes = [] # utility function for # sieve of Eratosthenes def sieve(): isComposite = [False]*(MAX+1) i = 2 while (i * i <= MAX): if (isComposite[i] == False): j = 2 while (j * i <= MAX): isComposite[i * j] = True j += 1 i += 1 # Store all prime numbers in # vector primes[] for i in range(2 MAX+1): if (isComposite[i] == False): primes.append(i) # Function to find LCM of # first n Natural Numbers def LCM(n): lcm = 1 i = 0 while (i < len(primes) and primes[i] <= n): # Find the highest power of prime # primes[i] that is less than or # equal to n pp = primes[i] while (pp * primes[i] <= n): pp = pp * primes[i] # multiply lcm with highest # power of prime[i] lcm *= pp lcm %= 1000000007 i += 1 return lcm # Driver code sieve() N = 7 # Function call print(LCM(N)) # This code is contributed by mits
C# // C# program to find LCM of First N // Natural Numbers. using System.Collections; using System; class GFG { static int MAX = 100000; // array to store all prime less than // and equal to 10^6 static ArrayList primes = new ArrayList(); // utility function for sieve of // sieve of Eratosthenes static void sieve() { bool[] isComposite = new bool[MAX + 1]; for (int i = 2; i * i <= MAX; i++) { if (isComposite[i] == false) for (int j = 2; j * i <= MAX; j++) isComposite[i * j] = true; } // Store all prime numbers in vector primes[] for (int i = 2; i <= MAX; i++) if (isComposite[i] == false) primes.Add(i); } // Function to find LCM of first // n Natural Numbers static long LCM(int n) { long lcm = 1; for (int i = 0; i < primes.Count && (int)primes[i] <= n; i++) { // Find the highest power of prime primes[i] // that is less than or equal to n int pp = (int)primes[i]; while (pp * (int)primes[i] <= n) pp = pp * (int)primes[i]; // multiply lcm with highest power of prime[i] lcm *= pp; lcm %= 1000000007; } return lcm; } // Driver code public static void Main() { sieve(); int N = 7; // Function call Console.WriteLine(LCM(N)); } } // This code is contributed by mits
JavaScript <script> // Javascript program to find LCM of First N // Natural Numbers. let MAX = 100000; // array to store all prime less than // and equal to 10^6 let primes = []; // utility function for sieve of // sieve of Eratosthenes function sieve() { let isComposite = new Array(MAX + 1); isComposite.fill(false); for (let i = 2; i * i <= MAX; i++) { if (isComposite[i] == false) for (let j = 2; j * i <= MAX; j++) isComposite[i * j] = true; } // Store all prime numbers in vector primes[] for (let i = 2; i <= MAX; i++) if (isComposite[i] == false) primes.push(i); } // Function to find LCM of first // n Natural Numbers function LCM(n) { let lcm = 1; for (let i = 0; i < primes.length && primes[i] <= n; i++) { // Find the highest power of prime primes[i] // that is less than or equal to n let pp = primes[i]; while (pp * primes[i] <= n) pp = pp * primes[i]; // multiply lcm with highest power of prime[i] lcm *= pp; lcm %= 1000000007; } return lcm; } sieve(); let N = 7; // Function call document.write(LCM(N)); // This code is contributed by decode2207. </script>
PHP // PHP program to find LCM of // First N Natural Numbers. $MAX = 100000; // array to store all prime less // than and equal to 10^6 $primes = array(); // utility function for // sieve of Eratosthenes function sieve() { global $MAX $primes; $isComposite = array_fill(0 $MAX false); for ($i = 2; $i * $i <= $MAX; $i++) { if ($isComposite[$i] == false) for ($j = 2; $j * $i <= $MAX; $j++) $isComposite[$i * $j] = true; } // Store all prime numbers in // vector primes[] for ($i = 2; $i <= $MAX; $i++) if ($isComposite[$i] == false) array_push($primes $i); } // Function to find LCM of // first n Natural Numbers function LCM($n) { global $MAX $primes; $lcm = 1; for ($i = 0; $i < count($primes) && $primes[$i] <= $n; $i++) { // Find the highest power of prime // primes[i] that is less than or // equal to n $pp = $primes[$i]; while ($pp * $primes[$i] <= $n) $pp = $pp * $primes[$i]; // multiply lcm with highest // power of prime[i] $lcm *= $pp; $lcm %= 1000000007; } return $lcm; } // Driver code sieve(); $N = 7; // Function call echo LCM($N); // This code is contributed by mits ?> Излаз
420
Временска сложеност : О(н2)
Помоћни простор: О(н)
Други приступ:
Идеја је да ако је број мањи од 3 онда врати број. Ако је број већи од 2 онда пронађите ЛЦМ од нн-1
- Рецимо к=ЛЦМ(нн-1)
- опет к=ЛЦМ(кн-2)
- опет к=ЛЦМ(кн-3) ...
- .
- .
- опет к=ЛЦМ(к1) ...
сада је резултат х.
За проналажење ЛЦМ(аб) користимо функцију хцф(аб) која ће вратити ХЦФ од (аб)
Знамо то ЛЦМ(аб)= (а*б)/ХЦФ(аб)
Илустрација:
For example if n = 7 function call lcm(76) now lets say a=7 b=6 Now b!= 1 Hence a=lcm(76) = 42 and b=6-1=5 function call lcm(425) a=lcm(425) = 210 and b=5-1=4 function call lcm(2104) a=lcm(2104) = 420 and b=4-1=3 function call lcm(4203) a=lcm(4203) = 420 and b=3-1=2 function call lcm(4202) a=lcm(4202) = 420 and b=2-1=1 Now b=1 Hence return a=420
Испод је примена горе наведеног приступа
C++// C++ program to find LCM of First N Natural Numbers. #include using namespace std; // to calculate hcf int hcf(int a int b) { if (b == 0) return a; return hcf(b a % b); } int findlcm(int aint b) { if (b == 1) // lcm(ab)=(a*b)/hcf(ab) return a; // assign a=lcm of nn-1 a = (a * b) / hcf(a b); // b=b-1 b -= 1; return findlcm(a b); } // Driver code int main() { int n = 7; if (n < 3) cout << n; // base case else // Function call // pass nn-1 in function to find LCM of first n natural // number cout << findlcm(n n - 1); return 0; } // contributed by ajaykr00kj
Java // Java program to find LCM of First N Natural Numbers public class Main { // to calculate hcf static int hcf(int a int b) { if (b == 0) return a; return hcf(b a % b); } static int findlcm(int aint b) { if (b == 1) // lcm(ab)=(a*b)/hcf(ab) return a; // assign a=lcm of nn-1 a = (a * b) / hcf(a b); // b=b-1 b -= 1; return findlcm(a b); } // Driver code. public static void main(String[] args) { int n = 7; if (n < 3) System.out.print(n); // base case else // Function call // pass nn-1 in function to find LCM of first n natural // number System.out.print(findlcm(n n - 1)); } } // This code is contributed by divyeshrabadiya07.
Python3 # Python3 program to find LCM # of First N Natural Numbers. # To calculate hcf def hcf(a b): if (b == 0): return a return hcf(b a % b) def findlcm(a b): if (b == 1): # lcm(ab)=(a*b)//hcf(ab) return a # Assign a=lcm of nn-1 a = (a * b) // hcf(a b) # b=b-1 b -= 1 return findlcm(a b) # Driver code n = 7 if (n < 3): print(n) else: # Function call # pass nn-1 in function # to find LCM of first n # natural number print(findlcm(n n - 1)) # This code is contributed by Shubham_Singh
C# // C# program to find LCM of First N Natural Numbers. using System; class GFG { // to calculate hcf static int hcf(int a int b) { if (b == 0) return a; return hcf(b a % b); } static int findlcm(int aint b) { if (b == 1) // lcm(ab)=(a*b)/hcf(ab) return a; // assign a=lcm of nn-1 a = (a * b) / hcf(a b); // b=b-1 b -= 1; return findlcm(a b); } // Driver code static void Main() { int n = 7; if (n < 3) Console.Write(n); // base case else // Function call // pass nn-1 in function to find LCM of first n natural // number Console.Write(findlcm(n n - 1)); } } // This code is contributed by divyesh072019.
JavaScript <script> // Javascript program to find LCM of First N Natural Numbers. // to calculate hcf function hcf(a b) { if (b == 0) return a; return hcf(b a % b); } function findlcm(ab) { if (b == 1) // lcm(ab)=(a*b)/hcf(ab) return a; // assign a=lcm of nn-1 a = (a * b) / hcf(a b); // b=b-1 b -= 1; return findlcm(a b); } let n = 7; if (n < 3) document.write(n); // base case else // Function call // pass nn-1 in function to find LCM of first n natural // number document.write(findlcm(n n - 1)); </script>
Излаз
420
Временска сложеност: О(н лог н)
Помоћни простор: О(1)