Дато нам је а Фибоначијев број . Првих неколико Фибоначијевих бројева су 0 1 1 2 3 5 8 13 21 34 55 89 144 .....
Морамо пронаћи индекс датог Фибоначијевог броја, тј. као да је Фибоначијев број 8 на индексу 6.
Примери:
Input : 13
Output : 7
Input : 34
Output : 9
1. метод (једноставан) : Једноставан приступ је проналажење Фибоначијевих бројева до датих Фибоначијевих бројева и бројање изведених итерација.
C++
// A simple C++ program to find index of given // Fibonacci number. #include int findIndex(int n) { // if Fibonacci number is less than 2 // its index will be same as number if (n <= 1) return n; int a = 0 b = 1 c = 1; int res = 1; // iterate until generated fibonacci number // is less than given fibonacci number while (c < n) { c = a + b; // res keeps track of number of generated // fibonacci number res++; a = b; b = c; } return res; } // Driver program to test above function int main() { int result = findIndex(21); printf('%dn' result); } // This code is contributed by Saket Kumar
Java // A simple Java program to find index of // given Fibonacci number. import java.io.*; class GFG { static int findIndex(int n) { // if Fibonacci number is less // than 2 its index will be // same as number if (n <= 1) return n; int a = 0 b = 1 c = 1; int res = 1; // iterate until generated fibonacci // number is less than given // fibonacci number while (c < n) { c = a + b; // res keeps track of number of // generated fibonacci number res++; a = b; b = c; } return res; } // Driver program to test above function public static void main (String[] args) { int result = findIndex(21); System.out.println( result); } } // This code is contributed by anuj_67.
Python3 # A simple Python 3 program to find # index of given Fibonacci number. def findIndex(n) : # if Fibonacci number is less than 2 # its index will be same as number if (n <= 1) : return n a = 0 b = 1 c = 1 res = 1 # iterate until generated fibonacci number # is less than given fibonacci number while (c < n) : c = a + b # res keeps track of number of # generated fibonacci number res = res + 1 a = b b = c return res # Driver program to test above function result = findIndex(21) print(result) # this code is contributed by Nikita Tiwari
C# // A simple C# program to // find index of given // Fibonacci number. using System; class GFG { static int findIndex(int n) { // if Fibonacci number // is less than 2 its // index will be same // as number if (n <= 1) return n; int a = 0 b = 1 c = 1; int res = 1; // iterate until generated // fibonacci number is less // than given fibonacci number while (c < n) { c = a + b; // res keeps track of // number of generated // fibonacci number res++; a = b; b = c; } return res; } // Driver Code public static void Main () { int result = findIndex(21); Console.WriteLine(result); } } // This code is contributed // by anuj_67.
JavaScript <script> // A simple Javascript program to // find index of given // Fibonacci number. function findIndex(n) { // If Fibonacci number // is less than 2 its // index will be same // as number if (n <= 1) return n; let a = 0 b = 1 c = 1; let res = 1; // Iterate until generated // fibonacci number is less // than given fibonacci number while (c < n) { c = a + b; // res keeps track of // number of generated // fibonacci number res++; a = b; b = c; } return res; } // Driver code let result = findIndex(21); document.write(result); // This code is contributed by decode2207 </script>
PHP // A simple PHP program to // find index of given // Fibonacci number. function findIndex($n) { // if Fibonacci number // is less than 2 // its index will be // same as number if ($n <= 1) return $n; $a = 0; $b = 1; $c = 1; $res = 1; // iterate until generated // fibonacci number // is less than given // fibonacci number while ($c < $n) { $c = $a + $b; // res keeps track of // number of generated // fibonacci number $res++; $a = $b; $b = $c; } return $res; } // Driver Code $result = findIndex(21); echo($result); // This code is contributed by Ajit. ?> Излаз
8
Метод 2 (засновано на формули)
Али овде смо морали да генеришемо све Фибоначијеве бројеве до одређеног Фибоначијевог броја. Али постоји брзо решење за овај проблем. Да видимо како! Имајте на уму да је израчунавање дневника броја операција О(1) на већини платформи.
Фибоначијев број је описан као
Ф н = 1 / скрт(5) (пов(ан) - пов(бн)) где
а = 1 / 2 ( 1 + скрт (5) ) и б = 1 / 2 ( 1 - скрт (5) )
Занемарујући пов(б н) који је веома мали због велике вредности н добијамо
н = округло { 2,078087 * лог(Фн) + 1,672276 }
где округли значи заокружити на најближи цео број.
скуп алата за опруге
Испод је имплементација горње идеје.
C++// C++ program to find index of given Fibonacci // number #include int findIndex(int n) { float fibo = 2.078087 * log(n) + 1.672276; // returning rounded off value of index return round(fibo); } // Driver program to test above function int main() { int n = 55; printf('%dn' findIndex(n)); }
Java // A simple Java program to find index of given // Fibonacci number public class Fibonacci { static int findIndex(int n) { float fibo = 2.078087F * (float) Math.log(n) + 1.672276F; // returning rounded off value of index return Math.round(fibo); } public static void main(String[] args) { int result = findIndex(55); System.out.println(result); } }
Python3 # Python 3 program to find index of given Fibonacci # number import math def findIndex(n) : fibo = 2.078087 * math.log(n) + 1.672276 # returning rounded off value of index return round(fibo) # Driver program to test above function n = 21 print(findIndex(n)) # This code is contributed by Nikita Tiwari.
C# // A simple C# program to find // index of given Fibonacci number using System; class Fibonacci { static int findIndex(int n) { float fibo = 2.078087F * (float) Math.Log(n) + 1.672276F; // returning rounded off value of index return (int)(Math.Round(fibo)); } // Driver code public static void Main() { int result = findIndex(55); Console.Write(result); } } // This code is contributed by nitin mittal
JavaScript <script> // A simple Javascript program to find // index of given Fibonacci number function findIndex(n) { var fibo = 2.078087 * parseFloat(Math.log(n)) + 1.672276; // Returning rounded off value of index return Math.round(fibo); } // Driver code var result = findIndex(55); document.write(result); // This code is contributed by Ankita saini </script>
PHP // PHP program to find index // of given Fibonacci Number function findIndex($n) { $fibo = 2.078087 * log($n) + 1.672276; // returning rounded off // value of index return round($fibo); } // Driver code $n = 55; echo(findIndex($n)); // This code is contributed by Ajit. ?> Излаз
10
Временска сложеност : О(1)
Помоћни простор : О(1)
приступ:
можемо решити овај проблем користећи формулу за н-ти Фибоначијев број који је:
Ф(н) = (пов((1+скрт(5))/2 н) - пов((1-скрт(5))/2 н)) / скрт(5)
Помоћу ове формуле можемо извести индекс датог Фибоначијевог броја. Можемо итерирати преко вредности н и израчунати одговарајући Фибоначијев број користећи горњу формулу све док не пронађемо Фибоначијев број који је већи или једнак датом броју. У овом тренутку можемо да вратимо индекс Фибоначијевог броја који одговара датом броју.
Испод је примена горњег приступа:
C++#include #include using namespace std; int findIndex(int n) { double phi = (1 + sqrt(5)) / 2; int index = round(log(n * sqrt(5) + 0.5) / log(phi)); int fib = round((pow(phi index) - pow(1 - phi index)) / sqrt(5)); if (fib == n) return index; else return -1; // n is not a Fibonacci number } int main() { int n = 34; int index = findIndex(n); cout << 'The index of ' << n << ' is ' << index << endl; return 0; }
Java //Java code for the above approach import java.util.*; public class FibonacciIndex { public static int findIndex(int n) { double phi = (1 + Math.sqrt(5)) / 2; int index = (int) Math.round(Math.log(n * Math.sqrt(5) + 0.5) / Math.log(phi)); int fib = (int) Math.round((Math.pow(phi index) - Math.pow(1 - phi index)) / Math.sqrt(5)); if (fib == n) return index; else return -1; // n is not a Fibonacci number } public static void main(String[] args) { int n = 34; int index = findIndex(n); System.out.println('The index of ' + n + ' is ' + index); } }
Python3 import math def find_index(n): phi = (1 + math.sqrt(5)) / 2 index = round(math.log(n * math.sqrt(5) + 0.5) / math.log(phi)) fib = round((math.pow(phi index) - math.pow(1 - phi index)) / math.sqrt(5)) if fib == n: return index else: return -1 # n is not a Fibonacci number def main(): n = 34 index = find_index(n) print(f'The index of {n} is {index}') if __name__ == '__main__': main()
C# using System; class Program { // Function to find the index of a number in the Fibonacci sequence static int FindIndex(int n) { double phi = (1 + Math.Sqrt(5)) / 2; // Golden ratio // Calculate the index using the formula for Fibonacci numbers int index = (int)Math.Round(Math.Log(n * Math.Sqrt(5) + 0.5) / Math.Log(phi)); // Calculate the Fibonacci number at the found index int fib = (int)Math.Round((Math.Pow(phi index) - Math.Pow(1 - phi index)) / Math.Sqrt(5)); // Check if the calculated Fibonacci number is equal to n if (fib == n) return index; else return -1; // n is not a Fibonacci number } static void Main() { int n = 34; int index = FindIndex(n); Console.WriteLine('The index of ' + n + ' is ' + index); } }
JavaScript // Function to find the index of a number in the Fibonacci sequence function findIndex(n) { const phi = (1 + Math.sqrt(5)) / 2; const index = Math.round(Math.log(n * Math.sqrt(5) + 0.5) / Math.log(phi)); const fib = Math.round((Math.pow(phi index) - Math.pow(1 - phi index)) / Math.sqrt(5)); if (fib === n) { return index; } else { return -1; // n is not a Fibonacci number } } // Main function to test the findIndex function function main() { const n = 34; const index = findIndex(n); console.log('The index of ' + n + ' is ' + index); } main();
Излаз
The index of 34 is 9
Временска сложеност: О(1) јер укључује само неколико аритметичких операција.
Сложеност простора: О(1) јер користи само константну количину меморије за складиштење променљивих.
Овај чланак је допринео Адитиа Кумар .